3.2.85 \(\int (d+e x)^2 \log (c (a+b x^2)^p) \, dx\) [185]

Optimal. Leaf size=141 \[ -\frac {2 \left (3 b d^2-a e^2\right ) p x}{3 b}-d e p x^2-\frac {2}{9} e^2 p x^3+\frac {2 \sqrt {a} \left (3 b d^2-a e^2\right ) p \tan ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )}{3 b^{3/2}}-\frac {d \left (b d^2-3 a e^2\right ) p \log \left (a+b x^2\right )}{3 b e}+\frac {(d+e x)^3 \log \left (c \left (a+b x^2\right )^p\right )}{3 e} \]

[Out]

-2/3*(-a*e^2+3*b*d^2)*p*x/b-d*e*p*x^2-2/9*e^2*p*x^3-1/3*d*(-3*a*e^2+b*d^2)*p*ln(b*x^2+a)/b/e+1/3*(e*x+d)^3*ln(
c*(b*x^2+a)^p)/e+2/3*(-a*e^2+3*b*d^2)*p*arctan(x*b^(1/2)/a^(1/2))*a^(1/2)/b^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 141, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {2513, 815, 649, 211, 266} \begin {gather*} \frac {2 \sqrt {a} p \text {ArcTan}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right ) \left (3 b d^2-a e^2\right )}{3 b^{3/2}}+\frac {(d+e x)^3 \log \left (c \left (a+b x^2\right )^p\right )}{3 e}-\frac {d p \left (b d^2-3 a e^2\right ) \log \left (a+b x^2\right )}{3 b e}-\frac {2 p x \left (3 b d^2-a e^2\right )}{3 b}-d e p x^2-\frac {2}{9} e^2 p x^3 \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^2*Log[c*(a + b*x^2)^p],x]

[Out]

(-2*(3*b*d^2 - a*e^2)*p*x)/(3*b) - d*e*p*x^2 - (2*e^2*p*x^3)/9 + (2*Sqrt[a]*(3*b*d^2 - a*e^2)*p*ArcTan[(Sqrt[b
]*x)/Sqrt[a]])/(3*b^(3/2)) - (d*(b*d^2 - 3*a*e^2)*p*Log[a + b*x^2])/(3*b*e) + ((d + e*x)^3*Log[c*(a + b*x^2)^p
])/(3*e)

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 266

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 649

Int[((d_) + (e_.)*(x_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Dist[d, Int[1/(a + c*x^2), x], x] + Dist[e, Int[x/
(a + c*x^2), x], x] /; FreeQ[{a, c, d, e}, x] &&  !NiceSqrtQ[(-a)*c]

Rule 815

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Int[ExpandIntegrand[(
d + e*x)^m*((f + g*x)/(a + c*x^2)), x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[c*d^2 + a*e^2, 0] && Integer
Q[m]

Rule 2513

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))*((f_.) + (g_.)*(x_))^(r_.), x_Symbol] :> Simp[(f
 + g*x)^(r + 1)*((a + b*Log[c*(d + e*x^n)^p])/(g*(r + 1))), x] - Dist[b*e*n*(p/(g*(r + 1))), Int[x^(n - 1)*((f
 + g*x)^(r + 1)/(d + e*x^n)), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p, r}, x] && (IGtQ[r, 0] || RationalQ[n
]) && NeQ[r, -1]

Rubi steps

\begin {align*} \int (d+e x)^2 \log \left (c \left (a+b x^2\right )^p\right ) \, dx &=\frac {(d+e x)^3 \log \left (c \left (a+b x^2\right )^p\right )}{3 e}-\frac {(2 b p) \int \frac {x (d+e x)^3}{a+b x^2} \, dx}{3 e}\\ &=\frac {(d+e x)^3 \log \left (c \left (a+b x^2\right )^p\right )}{3 e}-\frac {(2 b p) \int \left (\frac {e \left (3 b d^2-a e^2\right )}{b^2}+\frac {3 d e^2 x}{b}+\frac {e^3 x^2}{b}-\frac {a e \left (3 b d^2-a e^2\right )-b d \left (b d^2-3 a e^2\right ) x}{b^2 \left (a+b x^2\right )}\right ) \, dx}{3 e}\\ &=-\frac {2 \left (3 b d^2-a e^2\right ) p x}{3 b}-d e p x^2-\frac {2}{9} e^2 p x^3+\frac {(d+e x)^3 \log \left (c \left (a+b x^2\right )^p\right )}{3 e}+\frac {(2 p) \int \frac {a e \left (3 b d^2-a e^2\right )-b d \left (b d^2-3 a e^2\right ) x}{a+b x^2} \, dx}{3 b e}\\ &=-\frac {2 \left (3 b d^2-a e^2\right ) p x}{3 b}-d e p x^2-\frac {2}{9} e^2 p x^3+\frac {(d+e x)^3 \log \left (c \left (a+b x^2\right )^p\right )}{3 e}-\frac {\left (2 d \left (b d^2-3 a e^2\right ) p\right ) \int \frac {x}{a+b x^2} \, dx}{3 e}+\frac {\left (2 a \left (3 b d^2-a e^2\right ) p\right ) \int \frac {1}{a+b x^2} \, dx}{3 b}\\ &=-\frac {2 \left (3 b d^2-a e^2\right ) p x}{3 b}-d e p x^2-\frac {2}{9} e^2 p x^3+\frac {2 \sqrt {a} \left (3 b d^2-a e^2\right ) p \tan ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )}{3 b^{3/2}}-\frac {d \left (b d^2-3 a e^2\right ) p \log \left (a+b x^2\right )}{3 b e}+\frac {(d+e x)^3 \log \left (c \left (a+b x^2\right )^p\right )}{3 e}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.32, size = 211, normalized size = 1.50 \begin {gather*} \frac {3 \left (-b^{3/2} d^3-3 \sqrt {-a} b d^2 e+3 a \sqrt {b} d e^2+\sqrt {-a} a e^3\right ) p \log \left (\sqrt {-a}-\sqrt {b} x\right )-3 \left (b^{3/2} d^3-3 \sqrt {-a} b d^2 e-3 a \sqrt {b} d e^2+\sqrt {-a} a e^3\right ) p \log \left (\sqrt {-a}+\sqrt {b} x\right )+\sqrt {b} \left (6 a e^3 p x-b e p x \left (18 d^2+9 d e x+2 e^2 x^2\right )+3 b (d+e x)^3 \log \left (c \left (a+b x^2\right )^p\right )\right )}{9 b^{3/2} e} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^2*Log[c*(a + b*x^2)^p],x]

[Out]

(3*(-(b^(3/2)*d^3) - 3*Sqrt[-a]*b*d^2*e + 3*a*Sqrt[b]*d*e^2 + Sqrt[-a]*a*e^3)*p*Log[Sqrt[-a] - Sqrt[b]*x] - 3*
(b^(3/2)*d^3 - 3*Sqrt[-a]*b*d^2*e - 3*a*Sqrt[b]*d*e^2 + Sqrt[-a]*a*e^3)*p*Log[Sqrt[-a] + Sqrt[b]*x] + Sqrt[b]*
(6*a*e^3*p*x - b*e*p*x*(18*d^2 + 9*d*e*x + 2*e^2*x^2) + 3*b*(d + e*x)^3*Log[c*(a + b*x^2)^p]))/(9*b^(3/2)*e)

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 0.62, size = 965, normalized size = 6.84

method result size
risch \(-\frac {p \ln \left (-a^{2} e^{3}+3 a b \,d^{2} e +\sqrt {-a^{3} b \,e^{6}+6 a^{2} b^{2} d^{2} e^{4}-9 a \,b^{3} d^{4} e^{2}}\, x \right ) \sqrt {-a^{3} b \,e^{6}+6 a^{2} b^{2} d^{2} e^{4}-9 a \,b^{3} d^{4} e^{2}}}{3 e \,b^{2}}+\frac {p \ln \left (-a^{2} e^{3}+3 a b \,d^{2} e -\sqrt {-a^{3} b \,e^{6}+6 a^{2} b^{2} d^{2} e^{4}-9 a \,b^{3} d^{4} e^{2}}\, x \right ) \sqrt {-a^{3} b \,e^{6}+6 a^{2} b^{2} d^{2} e^{4}-9 a \,b^{3} d^{4} e^{2}}}{3 e \,b^{2}}+\frac {i \pi \,d^{2} \mathrm {csgn}\left (i c \left (b \,x^{2}+a \right )^{p}\right )^{2} \mathrm {csgn}\left (i c \right ) x}{2}+\frac {i \pi \,d^{2} \mathrm {csgn}\left (i \left (b \,x^{2}+a \right )^{p}\right ) \mathrm {csgn}\left (i c \left (b \,x^{2}+a \right )^{p}\right )^{2} x}{2}+\frac {i e^{2} \pi \,x^{3} \mathrm {csgn}\left (i c \left (b \,x^{2}+a \right )^{p}\right )^{2} \mathrm {csgn}\left (i c \right )}{6}-\frac {i \pi \,d^{2} \mathrm {csgn}\left (i \left (b \,x^{2}+a \right )^{p}\right ) \mathrm {csgn}\left (i c \left (b \,x^{2}+a \right )^{p}\right ) \mathrm {csgn}\left (i c \right ) x}{2}-\frac {i e^{2} \pi \,x^{3} \mathrm {csgn}\left (i \left (b \,x^{2}+a \right )^{p}\right ) \mathrm {csgn}\left (i c \left (b \,x^{2}+a \right )^{p}\right ) \mathrm {csgn}\left (i c \right )}{6}-d e p \,x^{2}-\frac {p \ln \left (-a^{2} e^{3}+3 a b \,d^{2} e +\sqrt {-a^{3} b \,e^{6}+6 a^{2} b^{2} d^{2} e^{4}-9 a \,b^{3} d^{4} e^{2}}\, x \right ) d^{3}}{3 e}-\frac {p \ln \left (-a^{2} e^{3}+3 a b \,d^{2} e -\sqrt {-a^{3} b \,e^{6}+6 a^{2} b^{2} d^{2} e^{4}-9 a \,b^{3} d^{4} e^{2}}\, x \right ) d^{3}}{3 e}+\ln \left (c \right ) d e \,x^{2}+\frac {2 a p \,e^{2} x}{3 b}-\frac {i \pi \,d^{2} \mathrm {csgn}\left (i c \left (b \,x^{2}+a \right )^{p}\right )^{3} x}{2}+\frac {i e \pi d \,x^{2} \mathrm {csgn}\left (i c \left (b \,x^{2}+a \right )^{p}\right )^{2} \mathrm {csgn}\left (i c \right )}{2}+\frac {i e \pi d \,x^{2} \mathrm {csgn}\left (i \left (b \,x^{2}+a \right )^{p}\right ) \mathrm {csgn}\left (i c \left (b \,x^{2}+a \right )^{p}\right )^{2}}{2}+\frac {e^{2} \ln \left (c \right ) x^{3}}{3}-\frac {2 e^{2} p \,x^{3}}{9}-2 d^{2} p x +\frac {\left (e x +d \right )^{3} \ln \left (\left (b \,x^{2}+a \right )^{p}\right )}{3 e}+\frac {e p \ln \left (-a^{2} e^{3}+3 a b \,d^{2} e +\sqrt {-a^{3} b \,e^{6}+6 a^{2} b^{2} d^{2} e^{4}-9 a \,b^{3} d^{4} e^{2}}\, x \right ) a d}{b}+\frac {e p \ln \left (-a^{2} e^{3}+3 a b \,d^{2} e -\sqrt {-a^{3} b \,e^{6}+6 a^{2} b^{2} d^{2} e^{4}-9 a \,b^{3} d^{4} e^{2}}\, x \right ) a d}{b}-\frac {i e \pi d \,x^{2} \mathrm {csgn}\left (i \left (b \,x^{2}+a \right )^{p}\right ) \mathrm {csgn}\left (i c \left (b \,x^{2}+a \right )^{p}\right ) \mathrm {csgn}\left (i c \right )}{2}+\ln \left (c \right ) d^{2} x -\frac {i e^{2} \pi \,x^{3} \mathrm {csgn}\left (i c \left (b \,x^{2}+a \right )^{p}\right )^{3}}{6}+\frac {i e^{2} \pi \,x^{3} \mathrm {csgn}\left (i \left (b \,x^{2}+a \right )^{p}\right ) \mathrm {csgn}\left (i c \left (b \,x^{2}+a \right )^{p}\right )^{2}}{6}-\frac {i e \pi d \,x^{2} \mathrm {csgn}\left (i c \left (b \,x^{2}+a \right )^{p}\right )^{3}}{2}\) \(965\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^2*ln(c*(b*x^2+a)^p),x,method=_RETURNVERBOSE)

[Out]

-1/3/e/b^2*p*ln(-a^2*e^3+3*a*b*d^2*e+(-a^3*b*e^6+6*a^2*b^2*d^2*e^4-9*a*b^3*d^4*e^2)^(1/2)*x)*(-a^3*b*e^6+6*a^2
*b^2*d^2*e^4-9*a*b^3*d^4*e^2)^(1/2)+1/3/e/b^2*p*ln(-a^2*e^3+3*a*b*d^2*e-(-a^3*b*e^6+6*a^2*b^2*d^2*e^4-9*a*b^3*
d^4*e^2)^(1/2)*x)*(-a^3*b*e^6+6*a^2*b^2*d^2*e^4-9*a*b^3*d^4*e^2)^(1/2)-1/2*I*Pi*d^2*csgn(I*(b*x^2+a)^p)*csgn(I
*c*(b*x^2+a)^p)*csgn(I*c)*x-1/6*I*e^2*Pi*x^3*csgn(I*(b*x^2+a)^p)*csgn(I*c*(b*x^2+a)^p)*csgn(I*c)+1/2*I*e*Pi*d*
x^2*csgn(I*c*(b*x^2+a)^p)^2*csgn(I*c)+1/2*I*e*Pi*d*x^2*csgn(I*(b*x^2+a)^p)*csgn(I*c*(b*x^2+a)^p)^2-d*e*p*x^2-1
/3/e*p*ln(-a^2*e^3+3*a*b*d^2*e+(-a^3*b*e^6+6*a^2*b^2*d^2*e^4-9*a*b^3*d^4*e^2)^(1/2)*x)*d^3-1/3/e*p*ln(-a^2*e^3
+3*a*b*d^2*e-(-a^3*b*e^6+6*a^2*b^2*d^2*e^4-9*a*b^3*d^4*e^2)^(1/2)*x)*d^3+ln(c)*d*e*x^2+2/3/b*a*p*e^2*x+1/3*e^2
*ln(c)*x^3+1/6*I*e^2*Pi*x^3*csgn(I*(b*x^2+a)^p)*csgn(I*c*(b*x^2+a)^p)^2-1/2*I*e*Pi*d*x^2*csgn(I*c*(b*x^2+a)^p)
^3+1/2*I*Pi*d^2*csgn(I*c*(b*x^2+a)^p)^2*csgn(I*c)*x+1/2*I*Pi*d^2*csgn(I*(b*x^2+a)^p)*csgn(I*c*(b*x^2+a)^p)^2*x
-2/9*e^2*p*x^3-2*d^2*p*x+1/3*(e*x+d)^3/e*ln((b*x^2+a)^p)+e/b*p*ln(-a^2*e^3+3*a*b*d^2*e+(-a^3*b*e^6+6*a^2*b^2*d
^2*e^4-9*a*b^3*d^4*e^2)^(1/2)*x)*a*d+e/b*p*ln(-a^2*e^3+3*a*b*d^2*e-(-a^3*b*e^6+6*a^2*b^2*d^2*e^4-9*a*b^3*d^4*e
^2)^(1/2)*x)*a*d+1/6*I*e^2*Pi*x^3*csgn(I*c*(b*x^2+a)^p)^2*csgn(I*c)-1/2*I*e*Pi*d*x^2*csgn(I*(b*x^2+a)^p)*csgn(
I*c*(b*x^2+a)^p)*csgn(I*c)+ln(c)*d^2*x-1/2*I*Pi*d^2*csgn(I*c*(b*x^2+a)^p)^3*x-1/6*I*e^2*Pi*x^3*csgn(I*c*(b*x^2
+a)^p)^3

________________________________________________________________________________________

Maxima [A]
time = 0.59, size = 130, normalized size = 0.92 \begin {gather*} \frac {1}{9} \, {\left (\frac {9 \, a d e \log \left (b x^{2} + a\right )}{b^{2}} + \frac {6 \, {\left (3 \, a b d^{2} - a^{2} e^{2}\right )} \arctan \left (\frac {b x}{\sqrt {a b}}\right )}{\sqrt {a b} b^{2}} - \frac {2 \, b x^{3} e^{2} + 9 \, b d x^{2} e + 6 \, {\left (3 \, b d^{2} - a e^{2}\right )} x}{b^{2}}\right )} b p + \frac {1}{3} \, {\left (x^{3} e^{2} + 3 \, d x^{2} e + 3 \, d^{2} x\right )} \log \left ({\left (b x^{2} + a\right )}^{p} c\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^2*log(c*(b*x^2+a)^p),x, algorithm="maxima")

[Out]

1/9*(9*a*d*e*log(b*x^2 + a)/b^2 + 6*(3*a*b*d^2 - a^2*e^2)*arctan(b*x/sqrt(a*b))/(sqrt(a*b)*b^2) - (2*b*x^3*e^2
 + 9*b*d*x^2*e + 6*(3*b*d^2 - a*e^2)*x)/b^2)*b*p + 1/3*(x^3*e^2 + 3*d*x^2*e + 3*d^2*x)*log((b*x^2 + a)^p*c)

________________________________________________________________________________________

Fricas [A]
time = 0.37, size = 316, normalized size = 2.24 \begin {gather*} \left [-\frac {9 \, b d p x^{2} e + 18 \, b d^{2} p x - 3 \, {\left (3 \, b d^{2} p - a p e^{2}\right )} \sqrt {-\frac {a}{b}} \log \left (\frac {b x^{2} + 2 \, b x \sqrt {-\frac {a}{b}} - a}{b x^{2} + a}\right ) + 2 \, {\left (b p x^{3} - 3 \, a p x\right )} e^{2} - 3 \, {\left (b p x^{3} e^{2} + 3 \, b d^{2} p x + 3 \, {\left (b d p x^{2} + a d p\right )} e\right )} \log \left (b x^{2} + a\right ) - 3 \, {\left (b x^{3} e^{2} + 3 \, b d x^{2} e + 3 \, b d^{2} x\right )} \log \left (c\right )}{9 \, b}, -\frac {9 \, b d p x^{2} e + 18 \, b d^{2} p x - 6 \, {\left (3 \, b d^{2} p - a p e^{2}\right )} \sqrt {\frac {a}{b}} \arctan \left (\frac {b x \sqrt {\frac {a}{b}}}{a}\right ) + 2 \, {\left (b p x^{3} - 3 \, a p x\right )} e^{2} - 3 \, {\left (b p x^{3} e^{2} + 3 \, b d^{2} p x + 3 \, {\left (b d p x^{2} + a d p\right )} e\right )} \log \left (b x^{2} + a\right ) - 3 \, {\left (b x^{3} e^{2} + 3 \, b d x^{2} e + 3 \, b d^{2} x\right )} \log \left (c\right )}{9 \, b}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^2*log(c*(b*x^2+a)^p),x, algorithm="fricas")

[Out]

[-1/9*(9*b*d*p*x^2*e + 18*b*d^2*p*x - 3*(3*b*d^2*p - a*p*e^2)*sqrt(-a/b)*log((b*x^2 + 2*b*x*sqrt(-a/b) - a)/(b
*x^2 + a)) + 2*(b*p*x^3 - 3*a*p*x)*e^2 - 3*(b*p*x^3*e^2 + 3*b*d^2*p*x + 3*(b*d*p*x^2 + a*d*p)*e)*log(b*x^2 + a
) - 3*(b*x^3*e^2 + 3*b*d*x^2*e + 3*b*d^2*x)*log(c))/b, -1/9*(9*b*d*p*x^2*e + 18*b*d^2*p*x - 6*(3*b*d^2*p - a*p
*e^2)*sqrt(a/b)*arctan(b*x*sqrt(a/b)/a) + 2*(b*p*x^3 - 3*a*p*x)*e^2 - 3*(b*p*x^3*e^2 + 3*b*d^2*p*x + 3*(b*d*p*
x^2 + a*d*p)*e)*log(b*x^2 + a) - 3*(b*x^3*e^2 + 3*b*d*x^2*e + 3*b*d^2*x)*log(c))/b]

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 374 vs. \(2 (131) = 262\).
time = 9.45, size = 374, normalized size = 2.65 \begin {gather*} \begin {cases} \left (d^{2} x + d e x^{2} + \frac {e^{2} x^{3}}{3}\right ) \log {\left (0^{p} c \right )} & \text {for}\: a = 0 \wedge b = 0 \\\left (d^{2} x + d e x^{2} + \frac {e^{2} x^{3}}{3}\right ) \log {\left (a^{p} c \right )} & \text {for}\: b = 0 \\- 2 d^{2} p x + d^{2} x \log {\left (c \left (b x^{2}\right )^{p} \right )} - d e p x^{2} + d e x^{2} \log {\left (c \left (b x^{2}\right )^{p} \right )} - \frac {2 e^{2} p x^{3}}{9} + \frac {e^{2} x^{3} \log {\left (c \left (b x^{2}\right )^{p} \right )}}{3} & \text {for}\: a = 0 \\- \frac {2 a^{2} e^{2} p \log {\left (x - \sqrt {- \frac {a}{b}} \right )}}{3 b^{2} \sqrt {- \frac {a}{b}}} + \frac {a^{2} e^{2} \log {\left (c \left (a + b x^{2}\right )^{p} \right )}}{3 b^{2} \sqrt {- \frac {a}{b}}} + \frac {2 a d^{2} p \log {\left (x - \sqrt {- \frac {a}{b}} \right )}}{b \sqrt {- \frac {a}{b}}} - \frac {a d^{2} \log {\left (c \left (a + b x^{2}\right )^{p} \right )}}{b \sqrt {- \frac {a}{b}}} + \frac {a d e \log {\left (c \left (a + b x^{2}\right )^{p} \right )}}{b} + \frac {2 a e^{2} p x}{3 b} - 2 d^{2} p x + d^{2} x \log {\left (c \left (a + b x^{2}\right )^{p} \right )} - d e p x^{2} + d e x^{2} \log {\left (c \left (a + b x^{2}\right )^{p} \right )} - \frac {2 e^{2} p x^{3}}{9} + \frac {e^{2} x^{3} \log {\left (c \left (a + b x^{2}\right )^{p} \right )}}{3} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**2*ln(c*(b*x**2+a)**p),x)

[Out]

Piecewise(((d**2*x + d*e*x**2 + e**2*x**3/3)*log(0**p*c), Eq(a, 0) & Eq(b, 0)), ((d**2*x + d*e*x**2 + e**2*x**
3/3)*log(a**p*c), Eq(b, 0)), (-2*d**2*p*x + d**2*x*log(c*(b*x**2)**p) - d*e*p*x**2 + d*e*x**2*log(c*(b*x**2)**
p) - 2*e**2*p*x**3/9 + e**2*x**3*log(c*(b*x**2)**p)/3, Eq(a, 0)), (-2*a**2*e**2*p*log(x - sqrt(-a/b))/(3*b**2*
sqrt(-a/b)) + a**2*e**2*log(c*(a + b*x**2)**p)/(3*b**2*sqrt(-a/b)) + 2*a*d**2*p*log(x - sqrt(-a/b))/(b*sqrt(-a
/b)) - a*d**2*log(c*(a + b*x**2)**p)/(b*sqrt(-a/b)) + a*d*e*log(c*(a + b*x**2)**p)/b + 2*a*e**2*p*x/(3*b) - 2*
d**2*p*x + d**2*x*log(c*(a + b*x**2)**p) - d*e*p*x**2 + d*e*x**2*log(c*(a + b*x**2)**p) - 2*e**2*p*x**3/9 + e*
*2*x**3*log(c*(a + b*x**2)**p)/3, True))

________________________________________________________________________________________

Giac [A]
time = 4.33, size = 173, normalized size = 1.23 \begin {gather*} \frac {2 \, {\left (3 \, a b d^{2} p - a^{2} p e^{2}\right )} \arctan \left (\frac {b x}{\sqrt {a b}}\right )}{3 \, \sqrt {a b} b} + \frac {3 \, b p x^{3} e^{2} \log \left (b x^{2} + a\right ) + 9 \, b d p x^{2} e \log \left (b x^{2} + a\right ) - 2 \, b p x^{3} e^{2} - 9 \, b d p x^{2} e + 9 \, b d^{2} p x \log \left (b x^{2} + a\right ) + 3 \, b x^{3} e^{2} \log \left (c\right ) + 9 \, b d x^{2} e \log \left (c\right ) - 18 \, b d^{2} p x + 9 \, a d p e \log \left (b x^{2} + a\right ) + 9 \, b d^{2} x \log \left (c\right ) + 6 \, a p x e^{2}}{9 \, b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^2*log(c*(b*x^2+a)^p),x, algorithm="giac")

[Out]

2/3*(3*a*b*d^2*p - a^2*p*e^2)*arctan(b*x/sqrt(a*b))/(sqrt(a*b)*b) + 1/9*(3*b*p*x^3*e^2*log(b*x^2 + a) + 9*b*d*
p*x^2*e*log(b*x^2 + a) - 2*b*p*x^3*e^2 - 9*b*d*p*x^2*e + 9*b*d^2*p*x*log(b*x^2 + a) + 3*b*x^3*e^2*log(c) + 9*b
*d*x^2*e*log(c) - 18*b*d^2*p*x + 9*a*d*p*e*log(b*x^2 + a) + 9*b*d^2*x*log(c) + 6*a*p*x*e^2)/b

________________________________________________________________________________________

Mupad [B]
time = 3.28, size = 263, normalized size = 1.87 \begin {gather*} \frac {e^2\,x^3\,\ln \left (c\,{\left (b\,x^2+a\right )}^p\right )}{3}-2\,d^2\,p\,x-\frac {2\,e^2\,p\,x^3}{9}+d^2\,x\,\ln \left (c\,{\left (b\,x^2+a\right )}^p\right )+d\,e\,x^2\,\ln \left (c\,{\left (b\,x^2+a\right )}^p\right )-d\,e\,p\,x^2+\frac {2\,a\,e^2\,p\,x}{3\,b}-\frac {2\,\sqrt {a}\,d^2\,p\,\mathrm {atan}\left (\frac {3\,\sqrt {a}\,b^{3/2}\,d^2\,p\,x}{a^2\,e^2\,p-3\,a\,b\,d^2\,p}-\frac {a^{3/2}\,\sqrt {b}\,e^2\,p\,x}{a^2\,e^2\,p-3\,a\,b\,d^2\,p}\right )}{\sqrt {b}}+\frac {2\,a^{3/2}\,e^2\,p\,\mathrm {atan}\left (\frac {3\,\sqrt {a}\,b^{3/2}\,d^2\,p\,x}{a^2\,e^2\,p-3\,a\,b\,d^2\,p}-\frac {a^{3/2}\,\sqrt {b}\,e^2\,p\,x}{a^2\,e^2\,p-3\,a\,b\,d^2\,p}\right )}{3\,b^{3/2}}+\frac {a\,d\,e\,p\,\ln \left (b\,x^2+a\right )}{b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(log(c*(a + b*x^2)^p)*(d + e*x)^2,x)

[Out]

(e^2*x^3*log(c*(a + b*x^2)^p))/3 - 2*d^2*p*x - (2*e^2*p*x^3)/9 + d^2*x*log(c*(a + b*x^2)^p) + d*e*x^2*log(c*(a
 + b*x^2)^p) - d*e*p*x^2 + (2*a*e^2*p*x)/(3*b) - (2*a^(1/2)*d^2*p*atan((3*a^(1/2)*b^(3/2)*d^2*p*x)/(a^2*e^2*p
- 3*a*b*d^2*p) - (a^(3/2)*b^(1/2)*e^2*p*x)/(a^2*e^2*p - 3*a*b*d^2*p)))/b^(1/2) + (2*a^(3/2)*e^2*p*atan((3*a^(1
/2)*b^(3/2)*d^2*p*x)/(a^2*e^2*p - 3*a*b*d^2*p) - (a^(3/2)*b^(1/2)*e^2*p*x)/(a^2*e^2*p - 3*a*b*d^2*p)))/(3*b^(3
/2)) + (a*d*e*p*log(a + b*x^2))/b

________________________________________________________________________________________